Descrizione del progetto

L'attività di questo AdR si svolge nel contesto del progetto CYPHER, il quale si propone di mettere a punto una metodologia tecnologicamente avanzata e innovativa per la progettazione e la realizzazione di smart components polimerici cyberfisici embedded con integrazione nativa di tecnologie IoT customizzate e con proprietà self sensing:

- in grado di monitorare in real time e da remoto grazie all'integrazione nativa di sensoristica/elettronica avanzata (IoT) e alla connessione con una piattaforma sw AI based per l'edge computing - lo stato, performance e funzionamento di un componente/pezzo/prodotto, permettendo Autodiagnostica intelligente, Manutenzione preventiva e predittiva;
- realizzati con tecnologie avanzate di Additive manufacturing con Stampa 3D multimateriale, con un processo che integra anche tecnologie di Digital twin per la riduzione del n. prototipi da realizzare e test da eseguire
- estremamente leggeri e, al contempo, in grado di offrire elevate prestazioni, resistenza, durata;
- sostenibili dal punto di vista ambientale (utilizzo di materiali compositi da riciclo, inquadrati in una logica di second life o di recupero delle materie prime nobili (economia circolare));
- applicabili in molteplici settori (manifatturiero, macchine automatiche, automotive, food&beverage, mobilità sostenibile, aerospaziale).

Relativamente al contesto e allo stato dell'arte attuale, diverse rilevanti filiere industriali regionali (manifatturiero, mobilità sostenibile, produzione macchine automatiche, aerospaziale, food&beverage) manifestano l'esigenza (ad oggi non soddisfatta) di disporre di veri sistemi cyber-physical a ridotta massa per risparmiare energia, in grado di: 1) percepire l'ambiente di lavoro per avere interazioni efficienti e sicure, 2) garantire un'elevata affidabilità e 3) avere una interazione intelligente ed attiva con l'ambiente operativo, 4) adattarsi a condizioni mutevoli.

I sintagmi tecnologici più rilevanti utilizzabili per rispondere a tali esigenze comprendono: Materiali intelligenti, Stampa 3D (di componenti meccanici e dispositivi elettronici); Tecnologie integrate per edge-computing. Le metodologie progettuali convenzionali [1] utilizzano paradigmi che non considerano le più recenti innovazioni sui materiali e approcci cyber-physical. È dunque necessario utilizzare metodologie progettuali basate su nuovi approcci che, ponendo al centro i materiali e le relative innovazioni [2], permettano una evoluzione verso un cyber-physical-design [3].

CYPHER si propone di utilizzare e strutturare un approccio cyber-physical per lo studio, realizzazione e testing di smart components basati sull'utilizzo di 3 sintagmi tecnologici: materiali self-sensing, elettronica realizzata con tecnologie di stampa 3D e edge-computing.

In CYPHER, gli smart components verranno progettati, realizzati e assemblati con avanzati sistemi di fissaggio self-sensing, per realizzare e testare il prototipo di un innovativo battery box per la mobilità sostenibile. Gli smart components verranno progettati e realizzati con materiali compositi avanzati e materiali ibridi, già studiati e realizzati da CIRI MAM [4-5], con incrementate proprietà meccaniche e capacità self-sensing. Grazie alle competenze di CIRI-ICT sui sistemi elettronici per lo structural-health-monitoring si studierà l'architettura elettronica, che verrà realizzata con la tecnologia AME di stampa 3D Dragonfly presso BI-REX e integrata con la logica AI-based di edge computing. Grazie alle vaste esperienze di digital twin di BI-REX e CIRI-MAM [6] si effettuerà la modellazione cyber-physical del prototipo di battery box.

- [1] Sapuan SM, et al., (2014), DOI: 10.1016/j.matdes.2014.01.059
- [2] Cocchi, D., et. al., (2020), DOI: 10.1007/s00170-020-05756-2
- [3] Parant, A., et. al., (2023), DOI: 10.1016/j.compind.2022.103808
- [4] Selleri, G., et al., (2022), DOI: 10.1016/j.matdes.2022.110787
- [5] Raimondi, L., et. al., (2021), DOI: 10.1016/j.compstruct.2021.114069
- [6] Cocchi, D., et. al., (2022), DOI: 10.1016/j.nantod.2022.101610

Piano delle attività

Sviluppo di un modello dinamico del sistema: definizione degli elementi costituenti del sistema, delle variabili fisiche, processi, agenti o qualsiasi altro elemento rilevante e delle relazioni e delle interazioni tra di essi. L'obiettivo è catturare le dinamiche del sistema, comprese le cause ed effetti delle variazioni nelle variabili di input. Un aspetto fondamentale del modello dinamico è la sua capacità di adattarsi ai cambiamenti nel tempo. Questo richiede una continua validazione del modello attraverso dati sperimentali o osservazioni sul campo.

Il processo di sviluppo di un modello dinamico sfrutterà anche tecnologie come l'intelligenza artificiale e il machine learning. Queste metodologie consentono di affinare ulteriormente il modello attraverso l'apprendimento automatico dai dati e l'ottimizzazione continua.

Sviluppo del sistema di simulazione del dispositivo intelligente per l'analisi e la verifica del comportamento: Implementazione del modello di simulazione e degli algoritmi per la verifica delle caratteristiche del sistema e delle sue condizioni di funzionamento. Verrà creato un modello basato su intelligenza artificiale che farà uso sia di dati sintetici generati dalla simulazione che di dati reali acquisiti sui prototipi.

Obiettivi

Il macro-obiettivo del modello dinamico e di simulazione del sistema è quello di individuare eventuali difettosità e criticità real time durante l'esercizio, rendendo i componenti "self -sensing" cioè in grado di autodiagnosticare l'insorgere di variazioni strutturali al loro interno.

Per raggiungere questo macro-obiettivo si devono realizzare i seguenti obiettivi intermedi:

- **02.1** Definizione dei requisiti del modello dinamico e di simulazione
- **02.2** Definizione del modello dinamico
- **02.3** Sviluppo del sistema di simulazione
- **O2.4** Validazione delle performance

Il sistema di simulazione verrà sviluppato per poter predire il comportamento del sistema in diverse condizioni di carico, vibrazione, temperatura e altri fattori ambientali. Inoltre, il modello generato potrà essere utilizzato per realizzare manutenzione predittiva.

Risultati attesi

- R2.1 Modello dinamico per la caratterizzazione del funzionamento e dell'integrità strutturale degli smart components
- R2.2 Sistema di simulazione per i componenti intelligenti e modello di comportamento basato su intelligenza artificiale